The category of uniform convergence spaces is cartesian closed
نویسندگان
چکیده
منابع مشابه
THE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS
In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $top$-filters, namely $top$-convergence spaces, and show the category of $top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$top$-convergence spaces and that of strong $L$-topological spaces is establish...
متن کاملCartesian-closedness of the category of $L$-fuzzy Q-convergence spaces
The definition of $L$-fuzzy Q-convergence spaces is presented by Pang and Fang in 2011. However, Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces is not investigated. This paper focuses on Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces, and it is shown that the category $L$-$mathbf{QFCS}$ of $L$-fuzzy Q-convergence spaces is Cartesian-closed.
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملA COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1976
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700022905